Ատոմի միջուկի կառուցվածքը: Ճառագայթաակտիվություն: Միջուկային ռեակցիաներ || 27.04.2023

Որքա՞ն է α մասնիկի լիցքը: Ընտրիր ճիշտ տարբերակը: +2

Ալֆա մասնիկները հելիումի միջուկներ են, որոնք պարունակում են 2 դրական լիցքավորված պրոտոն և 2 չեզոք նեյտրոն, հետևաբար ունեն 2+ լիցք։ Պրոտոններն ու նեյտրոնները յուրաքանչյուրն ունեն 1 ատոմային զանգվածի միավոր զանգված, և այսպիսով ալֆա մասնիկը ունի 4 ընդհանուր զանգված։

2. Ո՞րն է նախադասության սխալ շարունակությունը:

(Պատասխանը կարող է լինել մեկից ավելի)

Քիմիական տարրի միջուկները

  • ունեն բացասական լիցք
  • ունեն նույն թվով պրոտոններ
  • իրարից տարբերվում են պրոտոնների թվով
  • իրարից տարբերվում են էլեկտրոնների թվով

3. Ինչպե՞ս է փոխվում ռադիոակտիվ տարրի կարգաթիվը,երբ միջուկը նեյտրոն է արձակում:

4.Հենվելով ատոմի կառուցվածքի վերաբերյալ ձեր գիտելիքների վրա, որոշեք, թե քանի՞ նեյտրոն կա 16 8O-ի միջուկում:

5.Ելնելով ատոմի կառուցվածքի վերաբերյալ ժամանակակից պատկերացումներից, որոշեք թե քանի՞ պրոտոն է պարունակում   6429Cu+2դրական իոնը:

6.Միջուկային ռեակցիաների ժամանակ ինչպե՞ս է փոխվում ռադիոակտիվ տարրի կարգաթիվը, երբ նրա միջուկը α մասնիկ է արձակում:

7.Թորիումի 23292Th միջուկը ներյտրոններով ռմբակոծելիս ստացվում է 22988Ra: Ի՞նչ մասնիկ է արձակվում այդ միջուկային ռեակցիայի ժամանակ:

8. 1) Ճի՞շտ է արդյոք, որ միջուկային ուժերը գործում են պրոտոնների միջև:-ոչ (

Միջուկային ուժերը գործում են նուկլոնների բոլոր զույգերի՝ երկու պրոտոնի, պրոտոնի և նեյտրոնի, երկու նեյտրոնի միջև:)

2) Եվ ճիշտ է արդյոք, որ միջուկային ուժերը միայն ձգողական բնույթի են:–ոչ

Պատասխանում գրիր այո կամ ոչ:

 9.Որքա՞ն է γ մասնիկի լիցքը: Ընտրիր ճիշտ տարբերակը:

10.Որո՞նք են սխալ պատասխանները:

Լույսը իրենից ներկայացնում է.

  • էլեկտրամագնիսական ճառագայթում
  • պոզիտրոնների հոսք
  • նեյտրոնների հոսք
  • ֆոտոնների հոսք

Նախագիծ՝ Ատոմային էներգիան և բնապահպանական խնդիրները (Ֆիզիկա) || 10.04.2023

Նպատակները՝ Բազմաթիվ հավաստի փաստերի հիման վրա վերլուծել և եզրակացություններ անել հետևյալ հարցերի շուրջ

Կա՞ արդյոք խաղաղ ատոմի վտանգ։

20-րդ դարում՝ մինչև Չեռնոբիլի վթարը, միջուկային էներգիան դիտվում էր ոգևորությամբ և հույսով։ Եվ հիմա ոմանք այն համարում են մաքուր և էկոլոգիապես անվտանգ: Սակայն այն խնդիրները, որոնք ունեն ատոմակայանները, չեզոքացնում են նրանց բոլոր առավելությունները։ Խաղաղ ատոմի վտանգ միանշանակ կա։

Արդյո՞ք միջուկային էներգիան վտանգավոր է:

Միջուկային էներգիան անվտանգ և կայուն էներգիայի աղբյուր է, որը նվազեցնում է ածխածնի արտանետումները, սակայն ըստ այլ տեսակետի՝ միջուկային էներգիան բազմաթիվ սպառնալիքներ է ներկայացնում մարդկանց և շրջակա միջավայրի համար։

ԱԷԿ-ի շրջակա միջավայրի աղտոտումը։

Ատոմակայանների վտանգներից մեկը ռադիոակտիվ թափոններն են։ Միջուկային թափոնները պարզապես պլաստիկ շիշ չեն. նրանք մահացու են մնում մարդկանց համար հազարավոր տարիներ, իսկ որոշները՝ հարյուր հազարավոր տարիներ։ Ներկայումս ռադիոակտիվ թափոնների երկարաժամկետ բացարձակապես անվտանգ պահեստավորման լուծումներ չկան, և դրանց մեծ մասը գտնվում է ժամանակավոր վերգետնյա և ստորգետնյա պահեստարաններում:

Չեռնոբիլի աղետի հետևանքները։

1986 թվականի ապրիլի քսանվեցին միջուկային խոշոր աղետ տեղի ունեցավ Կիեւից ութսուն կիլոմետր հեռավորության վրա գտնվող Չեռնոբիլի ատոմակայանում։ Աղետի պատճառը սխալ նախագծված ռեակտորն էր, եւ պայթյունի հետեւանքով ռադիոակտիվ մասնիկները սփռվեցին Եւրոպական երկրներից շատերի տարածքում։ 

Տիրում էր այն ենթադրությունը, որ աղետի շրջակա տարածքները մի քանի տասնյակ տարիներ կմնան վարակված։ Սակայն մի նոր ուսումնասիրության տվյալների համաձայն, մարդկանց եւ շրջակա միջավայրի վրա դրա բացասական հետեւանքները շատ ավելի նվազ են, քան կարծում էին։

1986-ի ապրիլի լույս 26-ի գիշերը Չեռնոբիլի ԱԷԿ-ի չորրորդ էներգաբլոկում տեղի ունեցած վթարը դարձավ մեր ժամանակների խոշորագույն տեխնածին ու բնապահպանական աղետը:

Ըստ փորձագետների, Չեռնոբիլի ԱԷԿ-ի վթարի հետևանքով ռադիոակտիվ նյութերի ընդհանուր արտանետումը կազմեց մոտ 50 մլն կյուրի, ինչը համազոր է 1945-ի Հիրոսիմայի վրա արձակված ատոմային ռումբերի 500-պատիկ հզորությանը: Ռադիոակտիվ աղտոտման ենթարկվեց 155 հազար քառակուսի կիլոմետր տարածք 6 միլիոն 945 հազար բնակչությամբ:

Առաջադրանք՝ «Ատոմի միջուկի կառուցվածը» || 03․04-14․04 2023

Թեմատիկ հարցեր և խնդիրներ

1. Ո՞րն է բնական ճառագայթաակտիվության էությունը։

Բնական ճառագայթաակտիվությամբ օժտված են այն տարրերը, որոնք կարողանում են ինքնակամ ճառագայթահարվել։

2. Ինչպե՞ս է հայտագործվել բնական ճառագայթաակտիվության երևույթը։

Մի անգամ ամպամած եղանակի պատճառով, Անրի Բեքերելը ուրանի աղի նմուշները, առանց արևի լույսով ճառագայթահարելու, պահեց մութ դարակում։ Մի քանի օր անց դարակում դրված լուսազգայուն թիթեղի վրա տեսավ ուրանի աղի նույն սևացումները։ Այս ամենից էլ եզրակացրեց, որ ուրանն օժտված է ինքնակամ ճառագայթահարվելու։

3. Ի՞նչն է բնութագրական ճառագայթաակտիվության երևույթի համար։

Երբ տեղի է ունենում ճառագայթաակտիվության երևույթ, այն ժամանակ անջատվում է էներգիա և մեծ կարգաթիվ ունեցող միջուկները փոխակերպվում են ավելի փոքր կարգաթիվ ունեցող միջուկների։

4. Ո՞ր տարրերն են օժտված բնական ճառագայթաակտիվությամբ։

Բնական ճառագայթաակտիվությամբ օժտված են՝ ուրան, թորիում, պոլոնիում և ռադիում տարերը։

5. Ի՞նչ է ալֆա մասնիկը , թվարկել նրա բնութագրերը

Քիչ շեղված փունջը կոչվում է α-ճառագայթում՝ 0,5մմ ալյումինի շերտն ամբողջությամբ կլանում է α-ճառագայթումը։

6. Ի՞նչ է բետտա մասնիկը , թվարկել նրա բնութագրերը

Մյուս չշեղված փունջը կոչվում է β-ճառագայթում՝ 0,5մմ ալյումինի շերտով β-ճառագայթն անցնում է արարգել, 1մմ հաստությամբ կապարի կամ 5մմ հաստությամբ ալյումինի շերտերը β-ճառագայթումն ամբողջությամբ կլանում է։

7. Ի՞նչ է գամմա մասնիկը թվարկել նրա բնութագրերը

Չշեղված փունջը կոչվում է γ-ճառագայթում՝ 0,5մմ ալյումինի շերտով γ-ճառագայթն անցնում է արարգել, 1մմ հաստությամբ կապարի կամ 5մմ հաստությամբ ալյումինի շերտերը γ-ճառագայթը անցնում է առանց նկատելի թուլությամբ, իսկ 5սմ հաստությամբ կապարի շերտով γ-ճառագայթը չի անցնում։

8.Ինչո՞վ է պայմանավորված ճառացայթաակտիվության ազդեցությունը օրգանիզմի վրա

Ճառագայթաակտիվությունը խթնաում է օրգանիզմում բջիջների գործունեության վատթարացմանը և խախտմանը։

9.Ի՞նչ է ճառագայթման կլանված բաժնեչափը և ինչ միավորով է չափվում այն

Ճառագայթման կլանված էներգիայի հարաբերությունը ճառագայթահարված նյութի զանգվածին, կոչվում է ճառագայթման կլանված բաժնեչափ։ Այն չափում են գրեյներով (Գր)։

10. Ի՞նչ է ճառագայթման բնական ֆոնը

Ճառագայթման բնական ֆոնը տիեզերքի ճառագայթներն են և շրջապատող միջավայրի ճառագայթաակտիվությունը։

Առաջադրանք (Ֆիզիկա) || 14.03-24.03

1. Որոշեք ցրող ոսպնյակի օպտիկական ուժը, եթե նրա կեղծ կիզակետը գտնվում է ոսպնյակից 200 սմ հեռավորության վրա:

Picture42.png

FO = 200 սմ = 2 մ
_______
D = 1/FO = 0,5 դպտր

2. Ոսպնյակի օպտիկական ուժը 2 դպտր է: Ինչպիսի՞ ոսպնյակ է այն՝ հավաքող, թե՞ ցրող: Որքա՞ն է նրա կիզակետային հեռավորությունը:

D = 2 դպտր
______
F = 1/D = 0,5 մ
Կիզակետային հեռավերությունը հավաքող է, քանի որ այն դրական է։

3. Ինչպիսի՞ն է ապակե երկգոգավոր ոսպնյակը:

  • ցրող
  • իրական
  • կեղծ
  • հավաքող

4. Ինչպե՞ս է կոչվում այն կետը, որում ոսպնյակում բեկվելուց հետո հավաքվում են հավաքող ոսպնյակի գլխավոր օպտիկական առանցքին զուգահեռ ճառագայթները:

Ոսպնյակի գլխավոր կիզակետ

5. Առարկայի բարձրությունը 70 սմ է, իսկ նրա պատկերի բարձրությունը 52 սմ:
Որքա՞ն է ոսպնյակի գծային խոշորացումը:

h = 70 սմ
H = 52 սմ
_____
Γ = H/h = 52/70 = 0,74

6. Որքա՞ն է 0,8 մետր բարձրությամբ առարկայի պատկերի բարձրությունը, եթե ոսպնյակի գծային խոշորացումը 2,5 է: Պատասխանը գրել տասնորդականի ճշտությամբ:

H = 0,8 մ
Γ = 2,5
_____
h = H/Γ = 0,8/2,5 = 0,32 մ

7. Առարկայի բարձրությունը 75 սմ է, իսկ նրա պատկերի բարձրությունը 56 սմ: Որքա՞ն է ոսպնյակի գծային խոշորացումը:

h = 75 սմ
H = 56 սմ
_____
Γ = H/h = 56/75 = 0,75

8. Որքա՞ն է 1,1 մետր բարձրությամբ առարկայի պատկերի բարձրությունը, եթե ոսպնյակի գծային խոշորացումը 3,5 է: Պատասխանը գրել տասնորդականի ճշտությամբ:

H = 1,1 մ
Γ = 3,5
_____
h = H/Γ = 1,1/3,5 = 0,3 մ

9. Առարկայի պատկերի բարձրությունը ցրող ոսպնյակում 53 սմ է, իսկ ոսպնյակի գծային խոշորացումը 0,6: Որքա՞ն է այդ առարկայի բարձրությունը:

H = 53 սմ
Γ = 0,6
_____
h = H/Γ = 53/0,6 = 88,3 սմ

Ոսպնյակի բնութագրերը: Օպտիկական ուժ || 13.03- 17.03 2023

Լույսի անդրադարձման և բեկման երևույթները օգտագործվում են լուսային ճառագայթների տարածման ուղղությունը փոխելու նպատակով՝ տարբեր օպտիկական սարքերում, ինչպիսիք են մանրադիտակըաստղադիտակըխոշորացույցըլուսանկարչական ապարատը և այլն: 

post-34240-1212655712.jpg

 Այդ բոլոր սարքերում լուսափնջի կառավարումը իրականացվում է նրանց կառուցվածքի ամենակարևոր մասի՝ ոսպնյակի միջոցով:  

Convex and concave Lenses - Physics - Eureka.in (1)_1.gif

Ոսպնյակ է կոչվում թափանցիկ, սովորաբար ապակե մարմինը, որը երկու կողմից սահմանափակված է գնդային մակերևույթներով: 

Dnxva.jpg

Ինչպես երևում է նկարից, ոսպնյակը սահմանափակված է R1, R2 շառավիղներով և C1, C2 կենտրոններով գնդային մակերևույթներով: Ըստ իրենց ձևի՝ ոսպնյակները լինում են ուռուցիկ և գոգավոր:Ուռուցիկ են այն ոսպնյակները, որոնց միջին մասն ավելի հաստ է, քան եզրերը:Լինում են երկուռուցիկ (ա), հարթուռուցիկ (բ), գոգավոր-ուռուցիկ (գ) ոսպնյակներ: 

123456789.png

Գոգավոր են այն ոսպնյակները, որոնց միջին մասն ավերի բարակ է, քան եզրերը:Նրանք նույնպես լինում են 3 տեսակի. երկգոգավոր (ա),հարթ-գոգավոր (բ), գոգավոր-ուռուցիկ (գ): 

123456.png

 Ըստ իրենց չափերի՝ ոսպնյակները լինում են բարակ և ոչ բարակ:Բարակ են այն ոսպնյակները, որոնց միջին մասը (հաստությունը) զգալիորեն փոքր է նրանց սահմանափակող գնդային մակերևույթների շառավիղներից՝ d≪R1,R2Այստեղ d-ն ոսպնյակի հաստությունն է, R1,R2-ը՝ գնդոլորտների շառավիղները: Բարակ ոսպնյակների պայմանական նշաններն են՝ 

789.png

Կառուցման խնդիրներում հիմնականում ոսպնյակները ներկայացվում են այս պայմանական նշաններով: Ոսպնյակի բնութագրերն են.1. Գլխավոր օպտիկական առանցքըՈսպնյակը պարփակող գնդային մակերևույթների C1,C2 կենտրոնները միացնող ուղիղը կոչվում է գլխավոր օպտիկական առանցք:Այդ առանցքով ուղղված լուսային ճառագայթները ոսպնյակով անցնելիս չեն բեկվում և իրենց ուղղությունը չեն փոխում: 2. Օպտիկական կենտրոնըԲարակ ոսպնյակի և գլխավոր օպտիկական առանցքի հատման Օ կետը կոչվում է ոսպնյակի օպտիկական կենտրոն:Ոսպնյակի օպտիկական կենտրոնով անցնող ճառագայթը իր ուղղությունը չի փոխում: 

тл-6.jpg

3. Օպտիկական առանցքըՈսպնյակի Օ օպտիկական կենտրոնով անցնող ցանկացած ուղիղ կոչվում է ոսպնյակի օպտիկական առանցք:Ոսպնյակն ունի 1 գլխավոր և բազմաթիվ երկրորդային օպտիկական առանցքներ: Եթե ուռուցիկ ոսպնյակի նյութի բեկման ցուցիչն ավելի մեծ է միջավայրի բեկման ցուցիչից, օրինակ եթե միջավայրն օդն է, իսկ ոսպնյակը ապակի, ապա ուռուցիկ ոսպնյակը հավաքող է:Ոսպնյակը հավաքող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո հավաքվում է մեկ կետում:

e53_1 - Copy.png

 Նույն պայմանի դեպքում գոգավոր ոսպնյակը ցրող է:Ոսպնյակը ցրող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո ցրվում է բոլոր ուղղություններով:

e53_1 - Copy - Copy.png

4. Գլխավոր կիզակետը  Ոսպնյակի կարևոր բնութագրերից է նրա կիզակետը:Fկետը, որում, ոսպնյակում բեկվելուց հետո, հավաքվում են գլխավոր օպտիկական առանցքին զուգահեռ ճառագայթները, եթե ոսպնյակը հավաքող է, կամ ճառագայթների մտովի շարունակությունները, եթե ոսպնյակը ցրող է, կոչվում է ոսպնյակի գլխավոր կիզակետ:

Picture42.png

 Ցանկացած ոսպնյակ ունի երկու գլխավոր կիզակետ. ամեն կողմից մեկական, ոսպնյակի գլխավոր օպտիկական առանցքի վրա: ՈւշադրությունՀավաքող ոսպնյակի կիզակետերը իրական են, իսկ ցրողներինը՝ կեղծ:

 5. Կիզակետային հեռավորությունՈսպնյակի օպտիկական կենտրոնից` Oմինչև գլխավոր կիզակետ` F ընկած հեռավորությունը կոչվում է ոսպնյակի կիզակետային հեռավորություն:Կիզակետային հեռավորությունը նշանակվում է OF կամ F, և չափվում է մետրով: 

1.png

6. Կիզակետային հարթություն

Ոսպնյակի գլխավոր կիզակետով անցնող, գլխավոր օպտիկական առանցքին ուղղահայաց հարթությունը կոչվում է կիզակետային հարթություն, իսկ ուղղահայաց ուղիղը՝ կիզակետային ուղիղ:Եթե ոսպնյակը հավաքող է, ապա ճառագայթների կամայական զուգահեռ փունջ ոսպնյակով անցնելուց հետո հավաքվում է այդ ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում: Եթե ոսպնյակը ցրող է, ապա նրանում բեկվելուց հետո, ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում կհավաքվեն այդ ճառագայթների շարունակությունները: 

image_lab_rays_005.gif
image_lab_rays_006-iloveimg-cropped.gif

7. Օպտիկական ուժ

Կիզակետային հեռավորության հակադարձ մեծությունը կոչվում է ոսպնյակի օպտիկական ուժ և նշանակվում է Dտառով: D=1/F Ինչքան փոքր է ոսպնյակի կիզակետային հեռավորությունը, այնքան ավելի մեծ է նրա օպտիկական ուժը, այսինքն ՝ այնքան ավելի ուժեղ է այն բեկում ճառագայթները:Հավաքող ոսպնյակի օպտիկական ուժը դրական է՝ D≻0, իսկ ցրող ոսպնյակի օպտիկական ուժը բացասական է՝D≺0:Օպտիկական ուժի չափման միավորը 1 դիօպտրիան է: 1դպտր=1մ−1

1 դպտր-ն1մ կիզակետային հեռավորությամբ ոսպնյակի օպտիկական ուժն է:Օպտիկական բազմաթիվ սարքեր կազմված են մի քանի ոսպնյակից:Իրար հպված մի քանի ոսպնյակներով համակարգի օպտիկական ուժը հավասար է այդ համակարգի ոսպնյակների օպտիկական ուժերի գումարին:

D=D1+D2, որտեղ D-ն համակարգի օպտիկական ուժն է, իսկ D1-ը և D2-ը առանձին ոսպնյակների օպտիկական ուժերն են: 

8. Խոշորացում Ոսպնյակի միջոցով ստացվող առարկայի պատկերը կարող է առարկայից ավելի մեծ կամ փոքր չափեր ունենալ: 

Ոսպնյակի խոշորացումը ցույց է տալիս, թե առարկայի պատկերի գծային չափերը առարկայի  չափերի որ մասն են կազմում:Խոշորացումը նշանակում են Гտառով:Առարկայի պատկերի և առարկայի գծային չափերի հարաբերությունը կոչվում է ոսպնյակի խոշորացում:

Γ=H/h, որտեղ H-ը առարկայի պատկերի բարձրությունն է, իսկ h-ը՝ առարկայինը:

Տնային առաջադրանք՝ Էջ 109 (1-8 հարցերին)

1. Ոսպնյակ է կոչվում երկու կողմից գնդային մակերևույթներով սահմանափակված թափանցիկ մարմինը։

2. O1O2 ուղիղը կոչվում է ոսպնյակի գլխավոր օպտիկական առանցք։

3. Ըստ իրենց ձևի՝ ոսպնյակները լինում են ուռուցիկ և գոգավոր: 
Ուռուցիկ են այն ոսպնյակները, որոնց միջին մասն ավելի հաստ է, քան եզրերը: Լինում են երկուռուցիկ (ա), հարթուռուցիկ (բ), գոգավոր-ուռուցիկ (գ) ոսպնյակներ: 
Գոգավոր են այն ոսպնյակները, որոնց միջին մասն ավերի բարակ է, քան եզրերը:Նրանք նույնպես լինում են 3 տեսակի. երկգոգավոր (ա),հարթ-գոգավոր (բ), գոգավոր-ուռուցիկ (գ): 

4. Ըստ իրենց չափերի՝ ոսպնյակները լինում են բարակ և ոչ բարակ: Բարակ են այն ոսպնյակները, որոնց միջին մասը (հաստությունը) զգալիորեն փոքր է նրանց սահմանափակող գնդային մակերևույթների շառավիղներից՝ d≪R1,R2Այստեղ d-ն ոսպնյակի հաստությունն է, R1,R2-ը՝ գնդոլորտների շառավիղները:
Բարակ ոսպնյակի և գլխավոր օպտիկական առանցքի հատման Օ կետը կոչվում է ոսպնյակի օպտիկական կենտրոն:Ոսպնյակի օպտիկական կենտրոնով անցնող ճառագայթը իր ուղղությունը չի փոխում:

Լույս: Լույսի տարածումը համասեռ միջավայրում (Ֆիզիկա) || 03.03.2023

Լույսը շատ կարևոր դեր է կատարում մարդու կյանքում:

Լույսի շնորհիվ մենք կարողանում ենք ճանաչել մեզ շրջապատող աշխարհը:

Լույսն է, որ Արեգակից Երկիր հասնելով մեր մոլորակի վրա կյանքի գոյության համար անհրաժեշտ պայմանններ է ստեղծում:

luchi_sveta_10.jpg

Իսկ ի՞նչ է լույսը:

Լույսի բնույթի վերաբերյալ առաջին գիտական տեսությունը ստեղծել է Իսահակ Նյուտոնը 17-րդ դարում:

051112_1936_IsaacNewton1.jpg

Ըստ Նյուտոնի.

Լույսը կազմված է փոքրիկ մասնիկներից՝ կորպուսկուլներից, որոնք լուսատու մարմինը առաքում է բոլոր ուղղություններով՝ ճառագայթների երկայնքով:

1_1429683285364.JPG

Գրեթե միաժամանակ, հոլանդացի գիտնական Քրիստիան Հյուգենսը առաջարկել է լույսի ալիքային տեսությունը:

8224.jpg

Ըստ Հյուգենսի.

Լույսը առաձգական ալիք է՝ լույսի աղբյուրից հեռացող համակենտրոն գնդոլորտների տեսքով:

1_1429684219670.JPG

Վակումում լույսի տարածումը հերքեց լույսի՝ առաձգական ալիք լինելը: Սակայն 19-րդ դարի երկրորդ կեսին, էլեկտրամագնիսական ալիքների փորձնական ստացումը, լույսի և էլետրամագնիսական ալիքների արագության համընկնելը, թույլ տվեց Մաքսվելին և Հերցին իրենց աշխատություններում հաստատել լույսի ալիքային բնույթը և լույսը նույնացնել էլետրամագնիսական ալիքի հետ:

Լույս կամ տեսանելի ճառագայթում են անվանում 400−800ՏՀց (1ՏՀց=1012 Հց) հաճախության էլեկտրամագնիսական ալիքները, որոնք մարդու մոտ կարող են առաջացնել տեսողական զգայություններ:

Տարբեր հաճախությունների ճառագայթումները մարդու մոտ տարբեր գույների զգայություններ են առաջացնում՝ սկսած կարմիրից՝ 400−480 ՏՀց, մինչև մանուշակագույն՝ 670−800ՏՀց:

Visible-spectrum.jpeg

Հետագայում Ալբերտ Այնշտայնը՝ ֆոտոէֆեկտի երևույթը բացատրելիս, նորից անդրադարձավ լույսի մասնիկային բնույթին և ցույց տվեց, որ

ճառագայթելիս և կլանվելիս, լույսը իրենից ներկայացնում է լուսային մասնիկների՝ ֆոտոնների հոսք:

Այսպիսով լույսն ունի հատկությունների երկակիություն:

Սակայն անկախ այն բանից, թե ինչ բնույթ ունի լույսը՝ մասնիկների հոսք է, թե էլեկտրամագնիսական ալիք, այն ներկայացվում է որպես ճառագայթներ, որոնք սկսվում են լուսատու մարմնից և տարածվում բոլոր ուղղություններով՝ ցույց տալով լուսային էներգիայի տարածման ուղղությունը:

Տեսանելի տիրույթում ճառագայթող մարմնին անվանում են լույսի աղբյուր:

Եթե լույսի աղբյուրի չափերը շատ փոքր են մինչև լուսավորվող մարմին ընկած հեռավորության համեմատ, ապա այն անվանում են լույսի կետային աղբյուր

Լույսի աղբյուրները բաժանվում են նաև բնական և արհեստական աղբյուրների:

Լույսի բնական աղբյուրներն են՝ Արեգակը, աստղերը, կայծակը, լուսատիտիկը և այլն:

image005.png

Լույսի արհեստական աղբյուրներն են՝ ջերմային աղբյուրները (շիկացման լամպ, գազայրիչի բոց, մոմի լույս և այլն) և ոչ ջերմային աղբյուրները (ցերեկային լույսի լամպ, լուսադիոդ, լազեր, հեռուստացույցի կամ համակարգչի էկրան):

im1.1.jpg

Լույսի աղբյուր կարող են լինել ոչ միայն լուսատու մարմինները, այլև այն մարմինները, որոնք անրադարձնում են իրենց վրա ընկած լույսը բոլոր ուղղություններով, դարռնալով տեսանելի:

Այդպիսի աղբյուրներ են՝ Լուսինը, մոլորակները և մեր շուրջը գտնվող բոլոր տեսանելի առարկաները:

Լույսի տարածումը համասեռ միջավայրում:

Ֆիզիկայի այն բաժինը, որն ուսումնասիրում է լույսի հետ կապված երևույթները, կոչվում է օպտիկա:

Օպտիկայի այն բաժինը, որն ուսումնասիրում է լուսային ճառագայթների տարածման օրինաչափությունները՝ հաշվի չառնելոով նրանց ալիքային հատկությունները, կոչվում է երկրաչափական օպտիկա

Երկրաչափական օպտիկայի օրենքներից մի քանիսը հայտնագործվել է լույսի բնույթը պարզելուց շատ առաջ:

Այդպիսի օրենքներից է՝ լույսի ուղղագիծ տարածման օրենքը, որը ձևակերպել է հույն գիտնական Էվկլիդեսը՝ մ. թ. ա. երրորդ դարում:

euclid-3.jpg

Համասեռ, թափանցիկ միջավայրում լույսն ուղղագիծ է տարածվում:

Դրանում կարելի է համոզվել փորձերի օգնությամբ, որոնք հարմար է կատարել լազերային ցուցափայտի արձակած ճառագայթով: Այս կերպ կարող ենք տեսնել, որ ապակե անոթի մեջ լցված ջրում՝ համասեռ, թափանցիկ միջավայրում, լազերային ճառագայթը տարածվում է ուղիղ գծով:

maxresdefault (2).jpg

Լույսի ուղղագիծ տարածման հետևանք են հստակ ստվերները, որոնք ընկնում են անթափանց մարմիններից, երբ դրանք լուսավորվում են լույսի կետային աղբյուրից:

Shadows3.jpg

Օրինակ՝ եթե կետային լույսի աղբյուրի և էկրանի միջև անթափանց գունդ տեղադրենք, ապա էկրանի վրա մուգ շրջանի տեսքով ստվեր կհայտնվի:

Ստվերն այն տեղն է, որտեղ չի ընկնում լույսի աղբյուրի լույսը:

maxresdefault.jpg

Եթե լույսի կետային աղբյուրի փոխարեն օգտագործվի ավելի մեծ չափեր ունեցող աղբյուր՝ լամպ, ապա հստակ ստվերի փոխարեն լուսավորված ֆոնին կստանանք ստվեր և կիսաստվեր:

Դա ոչ միայն չի հակասում, այլ, ևս մեկ անգամ հաստատում է լույսի ուղղագիծ տարածման օրենքը:

62.png

Այն մասում, որտեղ լույս չի ընկնում լամպի և ոչ մի կետից, լիակատար ստվեր է, իսկ այն տիրույթում, որտեղ լույսը միայն որոշ կետերից է ընկնում՝ առաջանում է կիսաստվեր:

Հսկայական չափերի ստվեր և կիսաստվեր գոյանում են Արևի և Լուսնի խավարումների ժամանակ:

Արևի խավարումն առաջանում այն դեպքում, երբ Լուսինը՝ Երկրի շուրջը իր պտույտի ժամանակ, ամբողջովին կամ մասնակիորեն ծածկում է Արեգակը:

5b2e464aa65a02e9397cd1865eb2fb10.jpg

Իսկ, երբ Լուսինն է հայտնվում Երկրագնդի առաջացրած ստվերի կոնի մեջ, ապա տեղի ունենում Լուսնի խավարում:

Lusin.png

Լուսնի խավարումների ուսումնասիրությունը հնարավորություն է տվել Արիստոտելին՝ մ. թ. ա. չորրորդ դարում, եզրակացնել, որ Երկիրը գնդաձև է, ինչի վկայությունը Լուսնի վրա Երկրագնդի ստվերի շրջանաձև լինելն է:

Առաջադրանքներ (Ֆիզիկա) || 23.02.2022

3) Դադարի վիճակում գտնվող լիցքավորված մարմնի շուրջը գոյություն ունի էլեկտրական և մագնիսական դաշտեր։

2) Հաղորդչի երկայնքով՝ ուղիղ գծերով

2) Նիկել

2) Հարավային

2) Ա․ ծայրը կլինի մագնիսի հյուսիսային բևեռը, իսկ Բ-ն՝ հարավային։

3) Գնդասեղները իրար կվանեն

1) Ա — ից Բ

2) Տարատուն

2) Ա-ն հարավային, Բ-ն հյուսիսային

1) հարավային ․․.. հյուսիսայինի

Դասարանական աշխատանք (Ֆիզիկա)

1․ Ի՞նչ է էլեկտրական լիցքը։
Շփման հետևանքով մարմինները ձեռք են բերում նոր հատկություն` բացի տիեզերական ձգողության ուժից այլ ուժով փոխազդելու հատկություն։ Այդ հատկությունը բնութագրում են մի ֆիզիկական մեծությամբ, որն անվանում են լիցք։

2․ Ք՞անի տեսակ են էլեկտրական լիցքերը և ինչպես են միմյանց հետ փոխազդում։
Լիցքերը լինում են երկու տեսակ դրական (+), բացասական (-)։

3․ Ձևակերպել ատոմի կառուցվածը։
Ատոմի կենտրոնում դրական լիցքավորված միջուկն է։ Միջուկից՝ նրա չափերից շատ ավելի մեծ հեռավորությամբ պտտվում են էլեկտրոնները։ Միջուկում կան նաև դրականապես լիցքավորված լիցքեր։ Դրանց անվանել են պրոտոններ։ Պարունակվում են նաև չեզոք մարմիններ, որոնք կոչվում են նեյտրոններ։

4․ Ի՞նչ է էլեկտրական դաշտը։
Էլեկտրական դաշտը մատերիայի հատուկ տեսակ է, որը գոյություն ունի ցանկացած լիցքավորված մարմնի շուրջ:

5․ Ի՞նչ է էլեկտրական հոասնքը։
Հաղորդիչներով լիցքավորված մասնիկների ուղղորդված շարժումը, որի արդյունքում տեղի է ունենում լիցքի տեղափոխություն, կոչվում է էլեկտրական հոսանք:

6․ Ո՞ր մեծությունն են անվանում հոսանքի ուժ։
Էլեկտրական հոսանքը քանակապես բնութագրող ֆիզիկական մեծությունը կոչվում է հոսանքի ուժ:Հոսանքի ուժը ցույց է տալիս հողորդիչի լայնական հատույթով մեկ վայրկյանի ընթացքում անցնող լիցքի քանակը:

7․ Ո՞ր մեծությունն են անվանում էլեկտրական լարում։
Լարումը սկալյար ֆիզիկական մեծություն է, որը հավասար է դաշտի կատարած աշխատանքի հարաբերությանը հաղորդչով տեղափոխված լիցքի քանակին:
U=A/q

8․ Ո՞ր մեծությունն են անվանում էլեկտրական դիմադրություն։
Էլեկտրական հոսանքի նկատմամբ հաղորդչի հակազդեցությունը բնութագրող ֆիզիկական մեծությունը կոչվում է հաղորդչի էլեկտրական դիմադրություն և նշանակվում R տառով:

9․ Ձևակերպել Օհմի օրենքը։
Միևնույն լարման դեպքում տարբեր հաղորդիչներում հոսանքի ուժի արժեքները հակադարձ համեմատական են այդ հաղորդիչների դիմադրություններին։ Այլ կերպ ասած՝ որքան մեծ է հաղորդչի դիմադրությունը:

10․ Ձևակերպել Ջոուլ — Լենցի օրենքը։
Ջոուլ-Լենցի օրենքը հայտնագործվել է փորձնական ճանապարհով, սակայն դրան կարելի է նաև տեսական հիմնավորում տալ: Եթե շղթայի տեղամասում մեխանիկական աշխատանք չի կատարվում, նրանում քիմիական ռեակցիա տեղի չի ունենում, ապա հոսանքի ամբողջ աշխատանքը ուղղված է հաղորդչի ներքին էներգիայի մեծացմանը:

Տնային աշխատանք || (Ֆիզիկա) 17.11.2022

1․ Վ լարման համար հաշվարկված քանի՞ միատեսակ լամպ է անհրաժեշտ հաջորդաբար միացնել, որպեսզի ստացված տոնածառի ծաղկաշղթան հնարավոր լինի միացնել 100 Վ լարման ցանցին:

U = 100 Վ   |  100 Վ / 2,5 Վ = 40
U1 = 2,5 Վ

2․ 35 Օմ և 7 Օմ դիմադրություն ունեցող 2 ռեզիստորներ միացված են հաջորդաբար: Նրանցից որի՞ ծայրերում է լարումը փոքր և քանի՞ անգամ:  

Nk 9-5-2-8.jpg

R1 = 35 Օմ  |  U1/U2 = R1/R2 = 35 Օմ / 7 Օմ = 5
R2 = 7 Օմ    |  R2-ի ծայրում լարումը փոքր է 5 անգամ

3․ Որոշեք նկարում պատկերված շղթայի տեղամասի դիմադրությունը, եթե միմյանց միացված ռեզիստորների դիմադրությունները համապատասխանաբար հավասար են՝ R1 = 6 Օմ, իսկ R2 = 8 Օմ: 

Nk 9-6-1-2.jpg

R1*R2/R1+R2=R

6*8/6+8=16

R=16

4․ Ինչի՞ է հավասար նկարում պատկերված շղթայի տեղամասի ընդհանուր դիմադրությունը, եթե միմյանց զուգահեռ միացված միատեսակ լամպերից յուրաքանչյուրի դիմադրությունը 33 Օմ է: 

image-5f26d071.png

R1*R2/R1+R2=R

33*33/33+33=66

R=66

5․ Լարումը նկարում պատկերված շղթայի տեղամասում 50 Վ է, իսկ հոսանքի ուժը՝ 1 Ա: Որոշեք երկրորդ ռեզիստորի դիմադրությունը, եթե առաջինինը՝ 5 Օմ է: 

13.jpg

R1=5 Օմ

U=50 Վ

I=1 Ա

R2=?

———

R=U:l U=R

R=50

R2=50-5=45

Պատ`. R=50, R2=45

Գրիպի տարածումը ֆիզիկայի տեսանկյունից || Նախագիծ․ (Ֆիզիկա)

Նպատակները՝ Փորձնականորեն պարզել գրիպի վիրուսով վարակվելու հավանականությունը նույն դասարանի աշակերտների, ինչպես նաև այն սեռի մարդկանց շրջանում, որոնք ավելի զգայուն են այս վարակի նկատմամբ: Թոքերի ծավալը չափելով։

Խնդիրները՝ Ուսումնասիրել գրիպի վիրուսը և ինչպես է այն տարածվում։ Հաշվարկել թոքերի ծավալը. Ամփոփեք ուսումնասիրության արդյունքները.


Գրիպը լայնորեն տարածված վիրուսային հիվանդություն է, որն ախտահարում է շնչառական ուղիների լորևձաթաղանթը: Գրիպով հիվանդանում են բոլոր տարիքի մարդիկ, բոլոր եղանակներին, քանզի վիրուսի հանդեպ ընկալունակությունը շատ բարձր է, իսկ հիվանդությունից հետո ձեռք բերված իմունիտետը հաճախ կորչում է վիրուսի հարուցիչների նոր հատկություններ ձեռք բերելու պատճառով:

Ինչից կարող է այն առաջանալ և ինչպես է այն տարածվում

Վարակի աղբյուրը հիվանդ մարդն է, ով շրջապատի համար վտանգավոր է հիվանդության առաջին օրից մինչ լրիվ ապաքինումը։ Գրիպի հարուցիչն ախտահարում է շնչուղիների լորձաթաղանթը, որտեղից լորձի փոքրիկ մասնիկները վիրուսի հետ միասին հազալու, փռշտալու և խոսելու ժամանակ արտազատվում են արտաքին միջավայր և վարակում շրջապատի անձանց։

Գրիպ կարող է առաջանալ այն ժամանակ, երբ գրիպի վիրուսը ընկնում է վերին շնչառական ուղիներ, քայքայում և թեփոտում է լորձաթաղանթի վերին շերտի բջիջները: Շնչելիս, խոսելիս, հազալիս և փռշտալիս վիրուս պարունակող թեփոտված բջիջները պոկվում են և վարակում շրջապատողներին։ Վարակվում են նաև հիվանդի օգտագործած կենցաղային առարկաների միջոցով:

Թոքեր

Թոքերն օժտված են չափազանց մեծ առաձգականությամբ և գտնվում են կրծքավանդակի փակ խոռոչում՝ գրավելով նրա համարյա ամբողջ ծավալը։ Բնականոն պայմաններում չափահաս առողջ մարդը հանգիստ ժամանակ մեկ րոպեում կատարում է 16−20 շնչառական շարժում։ Հանգիստ ներշնչման ժամանակ մարդը ներշնչում է մոտ 500 սմ³ օդ և նույնքան էլ արտաշնչում: Ի դեպ, այդ օդից միայն 360 սմ³-ն է հասնում թոքեր, իսկ մնացած 140 սմ³-ը մնում է շնչառական ուղիներում և գազափոխանակությանը չի մասնակցում:


Վարկած՝ Որոշել դասարանի աշակերտների շրջանում գրիպի տարածման հնարավորությունը, ինչպես նաև, թե սեռերից որն է ավելի ընկալունակ վարակի նկատմամբ՝ հաշվարկելով աշակերտների կողմից արտաշնչված և ներշնչված օդում մոլեկուլների կոնցենտրացիան:

Դասարանում, եթե աշակերտներից մեկը ունի հետևյալ ախտանշաններից մեկը՝

  • ջերմություն (39-40°),
  • հազ,
  • կոկորդի ցավ,
  • մարմնի ջարդվածության զգացողություն,
  • հոգնածություն,
  • գլխացավ։

նշանակում է, որ նա հիվանդ է և վարակվելու հավանականությունը բավականին մեծ է(դա արդեն կախված է իմունային համակրգից)։

Տղամարդկանց և կանանց հորմոնալ տարբերությունները ուղղակիորեն արտացոլվում են վիրուսային վարակի ընթացքի վրա: Ընդհանուր առմամբ էգերի օրգանիզմում գրանցվել է ավելի ուժեղ դիմադրողականություն վարակի նկատմամբ, քան արուների մոտ